定义
普通队列:一端进,另一端出——FIFO(First in First out)先进先出
优先级队列:一端进,另一端出——按优先级出队
无序数组实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
| public interface Priority {
int priority(); }
public class PriorityQueue1<E extends Priority> implements Queue<E> {
Priority[] array; int size;
public PriorityQueue1(int capacity) { array = new Priority[capacity]; }
@Override public boolean offer(E value) { if(isFull()) { return false; } array[size++] = value; return true; }
public int selectMax() { int max = 0; for (int i = 0; i < size; i++) { if(array[i].priority() > array[max].priority()) { max = i; } } return max; }
@Override public E pool() { if(isEmpty()) { return null; } int max = selectMax(); E e = (E) array[max]; remove(max); return e; }
private void remove(int index) { if(index < size - 1) { System.arraycopy(array, index + 1, array, index, size-1-index); } array[--size] = null; }
@Override public E peek() { if(isEmpty()) { return null; } int max = selectMax(); return (E) array[max]; }
@Override public boolean isEmpty() { return size == 0; }
@Override public boolean isFull() { return size == array.length; } }
|
有序数组实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
| public interface Priority {
int priority(); }
public class PriorityQueue2<E extends Priority> implements Queue<E> {
Priority[] array; int size;
public PriorityQueue2(int capacity) { array = new Priority[capacity]; }
@Override public boolean offer(E value) { if(isFull()) { return false; } insert(value); size++; return true; }
private void insert(E value) { int i = size - 1; while(i >= 0 && array[i].priority() > value.priority()) { array[i+1] = array[i]; i--; } array[i+1] = value; }
@Override public E pool() { if(isEmpty()) { return null; } E e = (E) array[size - 1]; array[--size] = null; return e; }
@Override public E peek() { if(isEmpty()) { return null; } return (E) array[size - 1]; }
@Override public boolean isEmpty() { return size == 0; }
@Override public boolean isFull() { return size == array.length; } }
|
堆实现
特征:如果把完全二叉树放在数组的话,斜着放,一个元素一个坑
如果从索引0开始存储节点数据
- 节点i的父节点为floor((i - 1)/2),当i > 0时
- 节点i的左子节点为2i + 1,右子节点为2i + 2,当然他们得 < size
如果从索引1开始存储节点数据
- 节点i的父节点为floor(i/2),当i > 0时
- 节点i的左子节点为2i,右子节点为2i + 1,同样得 < size
代码实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
public class PriorityQueue3<E extends Priority> implements Queue<E> { Priority[] array; int size;
public PriorityQueue3(int capacity) { array = new Priority[capacity]; }
@Override public boolean offer(E offered) { if(isFull()) { return false; } int child = size++; int parent = (child - 1) / 2; while(child > 0 && offered.priority() > array[parent].priority()) { array[child] = array[parent]; child = parent; parent = (child - 1) / 2; } array[child] = offered; return true; }
private void insert(E value) { int i = size - 1; while(i >= 0 && array[i].priority() > value.priority()) { array[i+1] = array[i]; i--; } array[i+1] = value; }
@Override public E pool() { if(isEmpty()) { return null; } swap(0, size - 1); size--; Priority e = array[size]; array[size] = null; down(0); return (E) e; }
private void down(int parent) { int left = 2*parent + 1; int right = left + 1; int max = parent;
if(left < size && array[left].priority() > array[max].priority()) { max = left; } if(right < size && array[right].priority() > array[max].priority()) { max = right; } if(max != parent) { swap(max, parent); down(max); } }
private void swap(int i, int j) { Priority t = array[i]; array[i] = array[j]; array[j] = t; }
@Override public E peek() { if(isEmpty()) { return null; } return (E) array[0]; }
@Override public boolean isEmpty() { return size == 0; }
@Override public boolean isFull() { return size == array.length; } }
|